UNIDAD	DIVISIÓN	1 /	′ 2
AZCAPOTZALCO	CIENCIAS BÁSICAS E INGENIERÍA		
NOMBRE DEL PLAN MAESTRÍA EN CIENCIAS EN INGENIERÍA ELECTROMAGNÉTICA			
CLAVE	UNIDAD DE ENSEÑANZA APRENDIZAJE	CRED.	TIPO
1138101			
H. TEOR. 4.5	ELECTROMAGNETISMO DE BAJA FRECUENCIA CON	12	OPT.
	ELEMENTOS FINITOS		
H. PRACT. 3.0	SERIACIÓN	TRIMESTRE	
	AUTORIZACIÓN	II-	-VI

OBJETIVO GENERAL:

- Al finalizar el curso el alumno será capaz de:
 - 1. Aplicar el método de elemento finito en la solución de problemas electromagnéticos de baja frecuencia.
 - 2. Utilizar Software especializado de elemento finito en la solución de este tipo problemas.

CONTENIDO SINTÉTICO:

- 1. Introducción: Métodos variacionales y de residuales ponderados.
- 2. Funciones de forma y su manipulación matemática y numérica.
- 3. Funcionales electromagnéticas. Método de Galerkin. Propiedades de los elementos finitos más comunes en una y dos dimensiones. Ensamblaje de elementos finitos en un contexto global. Incorporación de condiciones de frontera. Sistemas de coordenadas.
- 4. Solución bidimensional por elementos finitos de la ecuación de Laplace, Poisson y Difusión.

MODALIDADES DE CONDUCCIÓN DEL PROCESO DE ENSEÑANZA- APRENDIZAJE:

Clase teórica con participación activa del alumno y con apoyo de medios audiovisuales y computacionales. Las horas prácticas se dedicarán al desarrollo de proyectos, ejercicios y problemas.

MODALIDAD DE EVALUACIÓN:

La calificación final estará constituida por:

- 1.80 %, evaluaciones periódicas, consistentes en la resolución de problemas, ejercicios o preguntas conceptuales.
- 2.20 %, tareas consistentes en el desarrollo de soluciones a problemas de ingeniería.

BIBLIOGRAFÍA NECESARIA O RECOMENDABLE:

- 1. Sheppard J. Salon. Finite Element Analysis of Electrical Machines, Springer(SIE), 2012.
- 2. J. Jin. Finite Element Method in Electromagnetics. Third Edition, Wiley-IEEE Press, 2014.
- 3. Gerard Meunier. The Finite Element Method for Electromagnetic Modeling, ISTE Ltd and John Wiley & Sons, 2008.
- 4. A. B. J. Reece and Thomas W. Preston. Finite Element Methods in Electrical Power Engineering, first edition, Oxford University Press, 2000.
- 5. Joao Bastos and Nelson Sadowski. Electromagnetic Modeling by Finite Element Methods, Marcel Dekker, 2003.
- 6. K. J. Binns, P. J. Lawrenson and C. W. Trowbridge. The Analytical and Numerical Solution of Electric and Magnetic Fields, John Wiley & Sons, 1992.
- 7. M. V. K. Chari and Sheppard J. Salon. Numerical Methods in Electromagnetism, Academic Press, 2000.
- 8. S. R. H. Hoole. Computer-Aided Analysis and Design of Electromagnetic Devices, Elsevier, 1989.
- 9. Peter P. Silvester and Ronald L. Ferrari. Finite Elements for Electrical Engineers, Third Edition, Cambridge, 1996.